在这项工作中,我们提出了一种开放式摄制对象检测方法,该方法基于图像映射对,学会了检测新颖对象类别以及给定的一组已知类别。这是一种两阶段的训练方法,首先使用位置引导的图像捕获匹配技术以弱监督的方式学习新颖和已知类别的类标签,第二个使用已知的类注释专用于对象检测任务的模型。我们表明,一个简单的语言模型比检测新对象的大型上下文化语言模型更适合。此外,我们引入了一种一致性调查技术,以更好地利用图像捕获对信息。我们的方法比较与现有的开放式检测方法相比,同时具有数据效率。源代码可从https://github.com/lmb-freiburg/locov获得。
translated by 谷歌翻译
Credit scoring models are the primary instrument used by financial institutions to manage credit risk. The scarcity of research on behavioral scoring is due to the difficult data access. Financial institutions have to maintain the privacy and security of borrowers' information refrain them from collaborating in research initiatives. In this work, we present a methodology that allows us to evaluate the performance of models trained with synthetic data when they are applied to real-world data. Our results show that synthetic data quality is increasingly poor when the number of attributes increases. However, creditworthiness assessment models trained with synthetic data show a reduction of 3\% of AUC and 6\% of KS when compared with models trained with real data. These results have a significant impact since they encourage credit risk investigation from synthetic data, making it possible to maintain borrowers' privacy and to address problems that until now have been hampered by the availability of information.
translated by 谷歌翻译
Spacecraft pose estimation is a key task to enable space missions in which two spacecrafts must navigate around each other. Current state-of-the-art algorithms for pose estimation employ data-driven techniques. However, there is an absence of real training data for spacecraft imaged in space conditions due to the costs and difficulties associated with the space environment. This has motivated the introduction of 3D data simulators, solving the issue of data availability but introducing a large gap between the training (source) and test (target) domains. We explore a method that incorporates 3D structure into the spacecraft pose estimation pipeline to provide robustness to intensity domain shift and we present an algorithm for unsupervised domain adaptation with robust pseudo-labelling. Our solution has ranked second in the two categories of the 2021 Pose Estimation Challenge organised by the European Space Agency and the Stanford University, achieving the lowest average error over the two categories.
translated by 谷歌翻译
Modal verbs, such as "can", "may", and "must", are commonly used in daily communication to convey the speaker's perspective related to the likelihood and/or mode of the proposition. They can differ greatly in meaning depending on how they're used and the context of a sentence (e.g. "They 'must' help each other out." vs. "They 'must' have helped each other out.") Despite their practical importance in natural language understanding, linguists have yet to agree on a single, prominent framework for the categorization of modal verb senses. This lack of agreement stems from high degrees of flexibility and polysemy from the modal verbs, making it more difficult for researchers to incorporate insights from this family of words into their work. This work presents Moverb dataset, which consists of 27,240 annotations of modal verb senses over 4,540 utterances containing one or more sentences from social conversations. Each utterance is annotated by three annotators using two different theoretical frameworks (i.e., Quirk and Palmer) of modal verb senses. We observe that both frameworks have similar inter-annotator agreements, despite having different numbers of sense types (8 for Quirk and 3 for Palmer). With the RoBERTa-based classifiers fine-tuned on \dataset, we achieve F1 scores of 82.2 and 78.3 on Quirk and Palmer, respectively, showing that modal verb sense disambiguation is not a trivial task. Our dataset will be publicly available with our final version.
translated by 谷歌翻译
The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
Autonomous vehicles are suited for continuous area patrolling problems. However, finding an optimal patrolling strategy can be challenging for many reasons. Firstly, patrolling environments are often complex and can include unknown and evolving environmental factors. Secondly, autonomous vehicles can have failures or hardware constraints such as limited battery lives. Importantly, patrolling large areas often requires multiple agents that need to collectively coordinate their actions. In this work, we consider these limitations and propose an approach based on a distributed, model-free deep reinforcement learning based multi-agent patrolling strategy. In this approach, agents make decisions locally based on their own environmental observations and on shared information. In addition, agents are trained to automatically recharge themselves when required to support continuous collective patrolling. A homogeneous multi-agent architecture is proposed, where all patrolling agents have an identical policy. This architecture provides a robust patrolling system that can tolerate agent failures and allow supplementary agents to be added to replace failed agents or to increase the overall patrol performance. This performance is validated through experiments from multiple perspectives, including the overall patrol performance, the efficiency of the battery recharging strategy, the overall robustness of the system, and the agents' ability to adapt to environment dynamics.
translated by 谷歌翻译
In 2021 300 mm of rain, nearly half the average annual rainfall, fell near Catania (Sicily island, Italy). Such events took place in just a few hours, with dramatic consequences on the environmental, social, economic, and health systems of the region. This is the reason why, detecting extreme rainfall events is a crucial prerequisite for planning actions able to reverse possibly intensified dramatic future scenarios. In this paper, the Affinity Propagation algorithm, a clustering algorithm grounded on machine learning, was applied, to the best of our knowledge, for the first time, to identify excess rain events in Sicily. This was possible by using a high-frequency, large dataset we collected, ranging from 2009 to 2021 which we named RSE (the Rainfall Sicily Extreme dataset). Weather indicators were then been employed to validate the results, thus confirming the presence of recent anomalous rainfall events in eastern Sicily. We believe that easy-to-use and multi-modal data science techniques, such as the one proposed in this study, could give rise to significant improvements in policy-making for successfully contrasting climate changes.
translated by 谷歌翻译
Answering complex questions over textual resources remains a challenging problem$\unicode{x2013}$especially when interpreting the fine-grained relationships among multiple entities that occur within a natural-language question or clue. Curated knowledge bases (KBs), such as YAGO, DBpedia, Freebase and Wikidata, have been widely used in this context and gained great acceptance for question-answering (QA) applications in the past decade. While current KBs offer a concise representation of structured knowledge, they lack the variety of formulations and semantic nuances as well as the context of information provided by the natural-language sources. With BigText-QA, we aim to develop an integrated QA system which is able to answer questions based on a more redundant form of a knowledge graph (KG) that organizes both structured and unstructured (i.e., "hybrid") knowledge in a unified graphical representation. BigText-QA thereby is able to combine the best of both worlds$\unicode{x2013}$a canonical set of named entities, mapped to a structured background KB (such as YAGO or Wikidata), as well as an open set of textual clauses providing highly diversified relational paraphrases with rich context information.
translated by 谷歌翻译
This project explores the feasibility of remote patient monitoring based on the analysis of 3D movements captured with smartwatches. We base our analysis on the Kinematic Theory of Rapid Human Movement. We have validated our research in a real case scenario for stroke rehabilitation at the Guttmann Institute5 (neurorehabilitation hospital), showing promising results. Our work could have a great impact in remote healthcare applications, improving the medical efficiency and reducing the healthcare costs. Future steps include more clinical validation, developing multi-modal analysis architectures (analysing data from sensors, images, audio, etc.), and exploring the application of our technology to monitor other neurodegenerative diseases.
translated by 谷歌翻译
Binarized Neural Networks (BNNs) are receiving increasing attention due to their lightweight architecture and ability to run on low-power devices. The state-of-the-art for training classification BNNs restricted to few-shot learning is based on a Mixed Integer Programming (MIP) approach. This paper proposes the BeMi ensemble, a structured architecture of BNNs based on training a single BNN for each possible pair of classes and applying a majority voting scheme to predict the final output. The training of a single BNN discriminating between two classes is achieved by a MIP model that optimizes a lexicographic multi-objective function according to robustness and simplicity principles. This approach results in training networks whose output is not affected by small perturbations on the input and whose number of active weights is as small as possible, while good accuracy is preserved. We computationally validate our model using the MNIST and Fashion-MNIST datasets using up to 40 training images per class. Our structured ensemble outperforms both BNNs trained by stochastic gradient descent and state-of-the-art MIP-based approaches. While the previous approaches achieve an average accuracy of 51.1% on the MNIST dataset, the BeMi ensemble achieves an average accuracy of 61.7% when trained with 10 images per class and 76.4% when trained with 40 images per class.
translated by 谷歌翻译